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The problem of optimizing over random structures emerges in many areas of science and engineering,
ranging from statistical physics to machine learning and artificial intelligence. For many such structures,
finding optimal solutions by means of fast algorithms is not known and often is believed not to be possible.
At the same time, the formal hardness of these problems in the form of the complexity-theoretic NP-hard-
ness is lacking. A new approach for algorithmic intractability in random structures is described in this article,
which is based on the topological disconnectivity property of the set of pairwise distances of near-optimal
solutions, called the Overlap Gap Property. The article demonstrates how this property 1) emerges in most
models known to exhibit an apparent algorithmic hardness; 2) is consistent with the hardness/tractability
phase transition for many models analyzed to the day; and, importantly, 3) allows to mathematically rigor-
ously rule out a large class of algorithms as potential contenders, specifically the algorithms that exhibit the
input stability (insensitivity).
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Optimization problems involving uncertainty emerge
in many areas of science and engineering, including
statistics, machine learning and artificial intelligence,
computer science, physics, biology, management sci-
ence, economics, and social sciences. The exact nature
and the sources of uncertainty vary from field to field. The
modern paradigm of Big Data brought forward optimiza-
tion problems involving, in particular, many dimensions,
thus creating a newmetafield of ”high-dimensional prob-
ability” and ”high-dimensional statistics” (1–3). Two re-
cent special semester programs at the Simons Institute
for the Theory of Computing were devoted to this bur-
geoning topic,* among a multitude of other confer-
ences and workshops. While many of the optimization
problems involving randomness can be solved to opti-
mality by fast, and in fact, sometimes borderline trivial,
algorithms, other problems have resisted decades of
attempts, and slowly, it has been accepted that these
problems are likely nonamenable to fast algorithms,
with polynomial time algorithms broadly considered
to be the gold standards for what constitutes fast algo-
rithms. The debate surrounding the actual algorithmic
hardness of these problems, though, is by no means

settled, unlike its ”worst-case” algorithmic complexity-
theoretic counterparts, expressed in the form of the
widely believed P ≠NP conjecture.

What is the ”right” algorithmic complexity theory
explaining the persistent failure to find tractable algo-
rithms for these problems? We discuss in this paper
some existing theories and explain their shortcomings
in light of what we know now about the state-of-the-art
algorithms. We then propose an approach, largely in-
spired by the field of statistical physics, which offers a
new topological/geometric theory of algorithmic hard-
ness that is based on the disconnectivity of the overlaps
of near-optimal solutions, dubbed the ”Overlap Gap
Property” (OGP). The property can and has been rigor-
ously verified for many concrete models and, impor-
tantly, can be used to mathematically rule out large
classes of algorithms as potential contenders, specifi-
cally algorithms exhibiting a form of input stability. This
includes both classical and quantum (QuantumApprox-
imate Optimization Algorithm [QAOA]) algorithms (4, 5),
which recently gained a lot of attention as one of the
most realistic algorithms to be implementable on quan-
tum computers (6). A widely studied random Number
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Partitioning problemwill be used to illustrate both the OGP and the
mechanics by which this property manifests itself as a barrier for
tractable algorithms.

The Largest Clique of a Random Graph: The Most
”Embarrassing” Open Problem in Random Structures
Imagine a club with N members, in which about 50% of the
NðN− 1Þ=2 member pairs know each other personally, and the
remaining 50% of the members do not. You want to find a largest
clique in this club, namely, the largest group of members out of
the N members who all know each other. What is the typical size
c* of such a clique? How easy is it to find one? This question can
be modeled as the problem of finding a largest fully connected
subgraph (formally called a ”clique”) in a random Erdös–Rényi
graphGðN, 1=2Þ, which is a graph onN nodes, where every pair of
nodes is connected with probability 1=2, independently for all
pairs. The first question regarding the largest clique size c* is a
textbook example of the so-called probabilistic method, a simple
application of which tells us that c* is likely to be near 2 log2Nwith
high degree of certainty as N gets large (7). A totally different
matter is the problem of actually finding such a clique, and this is
where the embarrassment begins. Richard Karp, one of the
founding fathers of the algorithmic complexity theory, observed in
his 1976 paper (8) that a very simple algorithm, both in terms of the
analysis and the implementation, finds a clique of roughly half-
optimum size, namely, with about log2Nmembers, and challenged
to do better. The problem is still open, and this is embarrassing for
two reasons: 1) The best-known algorithm, namely, the one above,
is also an extremely naive one. So it appears that the significant
progress that the algorithmic community has achieved over the
past decades in constructing ever more clever and powerful algo-
rithms is totally helpless in improving upon this extremely simple
and naive algorithm. 2) We don’t have a workable theory of algo-
rithmic hardness, which rigorously explains why finding cliques of
size half-optimum is easy, and improving on it does not seem
possible within the realm of polynomial time algorithms. The clas-
sical P ≠NP paradigm and its variants are of no help here. A variant
of this problem, called the Hidden Clique Problem, was intro-
duced in a seminal paper by Jerrum (9), and it exhibits a similar
algorithmic gap.

The largest clique problem turns out to be one of very many
other problems exhibiting a similar phenomenon: Using noncon-
structive analysis method, one shows that the optimal value of some
optimization problem involving randomness is some value c*, the
best known polynomial time algorithm achieves value cALG, and
there is a significant gap between the two: cALG < c*. A partial list
(but one growing seemingly at the speed of the Moore’s Law) is the
following: the randomly generated constraint satisfaction problem
(also known as [aka] the random K-satisfiability [K-SAT] problem),
the largest independent set in a randomgraph, proper coloring of a
random graph, finding a ground state of a spin-glass model in
statistical mechanics, discovering communities in a network (the so-
called community detection problem), group testing, statistical
learning of a mixture of Gaussian distributions, the sparse linear
regression problem, the sparse covariance estimation, the graph
matching problem, the spiked tensor problem, the Number Parti-
tioning problem, and many other problems.

The Number Partitioning problem is motivated in particular by
the statistical problem of designing a randomized controlled
study with two groups possessing roughly ”equal” attributes. It is
also a special case of the bin-packing problem and also has been

widely studied in the statistical physics literature. The Number
Partitioning problem will serve as one of the running examples in
this article, so we introduce it now. Given N items with weights
X1, . . . ,XN, the goal is to split it into two groups so that the dif-
ference of total weights in two groups is the smallest possible.
Namely, the goal is finding a subset {I⊂ 1, . . . ,N} such that
jPi∈IXi −

P
i∉IXij is as small as possible. An NP-hard problem in

the worst case (10), it is more tractable in the presence of ran-
domness. Suppose the weights Xi are generated independently,
according to the standard Gaussian distribution Nð0,1Þ. A rather
straightforward application of the same probabilistic method shows

that the optimum value is typically
ffiffiffiffi
N

p
2−N for large N. Namely,

the value of c* in our context is
ffiffiffiffi
N

p
2−N. An algorithm proposed by

Karmarkar and Karp in 1982 (11) achieves the value of order

cALG =
ffiffiffiffi
N

p
e−clog

2
2N, with value c predicted (though not proven) to be

1=ð2 log 2Þ≈ 0.721‥ (12). The multiplicative gap between the two

is thus very significant (exponential): cALG=c* = 2N−Oðlog2
2NÞ. No im-

provement of this result is known to date, and no algorithmic hard-
ness result is known either.

In Search of the Right Algorithmic Complexity Theory
We now describe some existing approaches for understanding
the algorithmic complexity and discuss their shortcomings in
explaining the existential/algorithmic gap exhibited by the mul-
titude of problems described above. Starting with the classical
algorithmic complexity theory based on the algorithmic complexity
classes such as P, NP, etc., this theory is of no help, since these
complexity classes are based on the worst-case assumptions on the
problem description. For example, assuming the widely believed
conjecture that P ≠NP, finding a largest clique in a graph with N
nodes within a multiplicative factor N1−δ is not possible by poly-
nomial time algorithms (13) for any constant δ∈ ð0,1Þ if P ≠NP. This
is a statement, however, about the algorithmic problem of finding
large cliques in all graphs, and it is in sharp contrast with the factor
1=2 achievable by polynomial time algorithms for random graphs
GðN, 1=2Þ, according to the discussion above.

A significant part of the algorithmic complexity theory does in
fact deal with problems with random input, and here, impressive
random-case to worst-case reductions are achievable for some of
the problems. These problems enjoy a wide range applications in
cryptography, where the average case-hardness property is para-
mount for designing secure cryptographic protocols. For example,
if there exists a polynomial time algorithm for computing the per-
manent of a matrix with independent and identically distributed
(i.i.d.) random inputs, then, rather surprisingly, one can use it to
design a polynomial time algorithm for all matrices (14). The latter
problem is known to be in the #P complexity class, which subsumes
NP. A similar reduction exists (15) for the problem of computing the
partition function of a Sherrington–Kirkpatrick model described
below, thus implying that computing partition functions for spin-
glass models is not possible by polynomial time algorithms unless
P = #P. Another problem admitting average-case to worst-case
reduction is the problem of finding a shortest vector in a lattice
(16). The random to worst-case types of reduction described above
would be ideal for our setting, as they would provide the most
compelling evidence of hardness of these problems. For example,
it would be ideal to show that finding a clique of size at least, say,
ð3=2Þlog2N in GðN, 1=2Þ implies a polynomial time algorithm with
the same approximation guarantee for all graphs. Unfortunately,
such a result appears out of reach for the existing proof techniques.
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Closer to the approach described in this paper, and the one
that in fact has largely inspired the present line of work, is a range
of theories based on the solution space geometry of the under-
lying optimization problem. This approach emerged in the sta-
tistical physics literature, specifically, the study of spin glasses, and
more recently found its way to questions above and beyond sta-
tistical physics, in particular, questions arising in the context of
studying neural networks, as in ref. 17. The general philosophy of
this take on the algorithmic complexity is that when the problem
appears to be algorithmically hard, this somehow should be
reflected in the nontrivial geometry of optimal or near-optimal
solutions. One of the earliest such approaches was formulated
for the decision problems, such as random constraint satisfaction
problems (aka the random K-SAT problem). It links the algorithmic
hardness with the proximity to the satisfiability phase-transition
threshold (18, 19) and the order (first vs. second) of the associ-
ated phase transition (20). To elaborate, we need to introduce the
random K-SAT problem first. It is a Boolean constraint satisfaction
problem involving N variables x1, . . . , xN defined as a conjunc-
tion Φ of M clauses C1∧C2∧ . . .∧CM, where each clause Cj is a
disjunction of exactly K variables from x1, . . . , xN or their nega-
tion. Thus, each Cj is of the form xj,1∨:xj,2∨⋯∨:xj,K. An example
of such a formula with N = 10, M = 4 and K = 3 is, say,
ðx2∨:x5∨x6Þ∧ð:x1∨:x2∨x9Þ∧ð:x6∨x8∨:x10Þ∧ð:x3∨x2∨x7Þ. A for-
mula is called satisfiable if there exists an assignment of Boolean
variables xi, 1≤ i≤N to values zero and one such that the value of
the formula is one.

A random instance of a K-SAT problem is obtained by selecting
variables into each clause Cj uniformly at random, independently
for all j, and applying the negation operation :with probability 1=2
independently for all variables. The random K-SAT problem is
viewed by statistical physicists as a problem exhibiting the so-called
frustration property, which is of great interest to physics of spin
glasses, and, hence, it has enjoyed a great deal of attention in the
statistical physics literature (21, 22).

As it turns out, for each K, there is a conjectured critical
threshold αSAT =M=N for the satisfiability property, which was rig-
orously proven (23) for large enough K. In particular, for every
α< αSAT, the formula admits a satisfying assignment whenM=N< α,
and for every α> αSAT, the formula does not admit a satisfying as-
signment when M=N> α, both with overwhelming probability as
N→∞. The sharpness of this transition was established rigorously
earlier by general methods in ref. 24. The algorithmic counterparts,
however, came short of achieving the value αSAT for every K ≥ 3
(more on this below). Even before the results in refs. 23 and 24, it
was conjectured in the physics literature that perhaps the existence
of the sharp phase-transition property itself is the culprit for the
algorithmic hardness (19, 20). This was argued by studying the
heuristic running times of finding the satisfying solutions or dem-
onstrating nonexistence of ones for small values of K and observing
that the running time explodes near αSAT and subsides when M=N
is far from αSAT on either side. The values of αSAT are known thanks
to the powerful machinery of the replica symmetry methods de-
veloped in seminal works of Parisi (21, 25). Thesemethods give very
precise predictions for the values of αSAT for every K. For example,
αSAT is ∼4.26 when K = 3. An in-depth analysis of the exponent of
the running times was reported in ref. 19.

The theory postulating that the algorithmic hardness of the
K-SAT problem is linked with the satisfiability phase transition,
however, appears inconsistent with the later rigorous discoveries
obtained specifically for large values of K. In particular, while αSAT

is known to be approximately 2K log 2 for large values of K, all of
the known algorithms stall long before that, and specifically at
αALG = ð2K=KÞlogK (26). Furthermore, there is evidence that
breaking this barrier might be extremely challenging. This was
argued by proving that the model undergoes the so-called clus-
tering phase transition near αALG (27, 28) (more on this below), and
also by ruling out various families of algorithms. These algorithms
include sequential local algorithms and algorithms based on low-
degree polynomials (using the OGP discussed in the next section)
(29, 30), the Survey Propagation algorithm (31), and a variant of a
random-search algorithm called WalkSAT (32). The Survey Prop-
agation algorithm is a highly effective heuristics for finding satisfy-
ing assignments in randomK-SAT andmany other similar problems.
It is particularly effective for low values of K and beats many other
existing approaches in terms of the running times and sizes of in-
stances it is capable to handle (33) (see also ref. 34 for the per-
spective on the approach). It is entirely possible that this algorithm
and even its more elementary version, the Belief Propagation
guided decimation algorithm, solves the satisfiability problem for
small values of K. An evidence of this can be found in ref. 35, and
rigorous analysis of this algorithm was conducted by Coja-Oghlan
in ref. 36, which shows it to be effective when α≤ 2K=K. However,
the analysis by Hetterich in ref. 31 rules out the Survey Propagation
algorithm for sufficiently large values of K, beyond the αALG
threshold, which we recall is ð2K=KÞlogK. Additionally, the theory
of algorithmic hardness based on the existence of the satisfiability-
type phase transition does not appear to explain the algorithmic
hardness associated with optimization problems, such as the largest
clique problem in GðN, 1=2Þ.

The clustering property was rigorously established (27, 28) for
random K-SAT for values of α above αClust, which is known to be
close to αALG for large K. We specifically refer to this as weak
clustering property in order to distinguish it from the strong clus-
tering property, both of which we now define. (While the distinction
between weak and strong clustering was discussed in many prior
works, the choice of the terminology is entirely by the author.) The
model exhibits the weak clustering property if there exists a subset
Σ of satisfying assignments, which contains all but exponentially
small in N fraction of the satisfying assignments and which can be
partitioned into subsets (clusters) separated by order OðNÞ dis-
tances, such that within each cluster, one can move between any
two assignments by changing, at most, constantly many Oð1Þ bits.
In other words, by declaring two assignments σ and τ connected if τ
can be obtained from σ by flipping the values of, at most, Oð1Þ
variables, the set Σ consists of several disconnected components
separated by linear inN distances. This is illustrated in SI Appendix,
Fig. S1, where blue regions represent clusters in Σ. The gray
”tunnel”-like sets depicted in the figure are part of the complement
(exception) subset Σc of the set of satisfying assignments, which
may potentially connect (tunnel between) the clusters. Furthermore,
the clusters are separated by exponentially large in N cost barriers,
meaning that any path connecting two solutions from different
clusters (which then necessarily contains assignments violating at
least some of the constraints), at some point, contains in it as-
signments, which, in fact, violate order OðNÞ constraint. For this
reason, the clustering property is sometimes referred to as an
“energetic” barrier.

As mentioned earlier, for large values of K, the onset of weak
clustering occurs near 2K log 2=K, and, in fact, the suggestion that
this value indeed corresponds to the algorithmic threshold αALG was
partially motivated by this discovery of weak clustering property

Gamarnik PNAS | 3 of 10
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around this value. See also ref. 37 for the issues connecting the
clustering property with the algorithmic hardness. Below αALG, the
bulk of the set of satisfying assignments constitutes one connected
subset.

On the other hand, the strong clustering property is the property
that all satisfying assignments can be partitioned into clusters like
the ones above, however, with no exceptions. Namely, Σ is the set
of all satisfying assignments. This can be visualized from SI Ap-
pendix, Fig. S1, where the gray tunnels would be removed. It turns
out that for large values of K, the model does exhibit the strong
clustering property as well, but the known lower bounds for it are of
the order 2K, as opposed to 2K=K, for large K. While not proven
formally, it is expected though that the onset of the strong clus-
tering property indeed occurs at values order 2K, as opposed to
2K=K, for large K. Namely, the weak and strong clustering prop-
erties appear at different in K scales.

The existence of the strong clustering property is established
as an implication of the OGP (which is the subject of this paper),
and this was the approach used in refs. 27 and 28. In contrast, the
weak clustering property is established by using the so-called
planting solution, which amounts to consider the solution-space
geometry from the perspective of a uniformly at random selected
satisfying assignment.

The necessity of distinguishing between the two modes of
clustering described above is driven by algorithmic implications.
Solutions generated by most algorithms typically are not generated
uniformly at random and, thus, in principle, can easily fall into the
exception set Σc. Thus, the obstruction arguments based somehow
on linear separations between the clusters and exponentially large
energetic barriers might simply be of no algorithmic relevance; see
the laterOGP, the Clustering Property, and the Curious Case of the
Perceptron Model section devoted to the relationship between
clustering and the OGP.

As the notion of ”exception” size in the definition of weak
clustering property hinges on the counting measure associated
with the space of satisfying assignments (and the uniformmeasure
was assumed in the discussion above), a potential improvement
might stem from changing this counting measures and introduc-
ing solution-specific weights. Interestingly, for small values of K,
this can be done effectively delaying the onset of weak clustering,
as was shown by Budzynski et al. in ref. 38. Unfortunately, though,
for large K, the gain is only in second-order terms, and up to those
orders, the threshold for the onset of weak clustering based on
biased counting measures is still 2K log 2=K, as shown by Bud-
zynski and Semerjian in ref. 39. This, arguably, provides an even
more robust evidence that this value marks a phase-transition
point of fundamental nature.

More recently, algorithmic barriers were suggested to be
linked with refined properties of the clustering phase transition,
specifically, the so-called condensation-phase transition (40) and
the emergence of so-called frozen variables. Algorithmic impli-
cations of both are discussed in ref. 41. Using again a powerful
machinery of the replica symmetry breaking, providing non-
rigorous, though highly believable, predictions, one identifies
another phase transition αCOND satisfying αALG < αCOND < αSAT for
large K. As the value M=N passes through αCOND, the number of
solution clusters covering the majority of satisfying assignment in
the random K-SAT problem drops dramatically from the expo-
nentially many to only constantly many ones, with the largest
cluster containing a nontrivial fraction of all of the assignments (40)
(SI Appendix, Fig. S1). At this stage, a long-range dependence

between the spin magnetization (appropriately defined) emerges,
and, furthermore, at this stage, the random overlaps (inner
products) of pairs of assignments generated according to the
associated Gibbs measure have a nontrivial limiting distribution,
described by the so-called Parisi measure.

Even before the value M=N exceeds the value αCOND for large
K, each cluster contains a nontrivial fraction of the frozen variables,
which are variables always taking the same values within a given
cluster of satisfying assignment. The authors in ref. 41 conjecture
that the emergence of frozen variables is the primary culprit of the
algorithmic hardness and construct a variant of the Survey Prop-
agation algorithm called the Backtracking Survey Propagation
algorithm, which is conjectured to be effective all the way up to
M=N< αCOND. Numerical simulations demonstrate an excellent
performance of this algorithm on randomly generated instances
of K-SAT for small values of K.

The conjecture linking the emergence of frozen variables with
algorithmic hardness stumbles, however, upon similar challenges
as the theory based on the existence of the phase transition. A
rigorous evidence has been established that when K is large,
αCOND is of the order 2K log 2−C for some (explicitly computable)
value C, which does not depend on K. In particular, αCOND is
substantially above the value αALG at which all known algorithms
fail, and, furthermore, classes of algorithms, including the stan-
dard Survey Propagation algorithm, are ruled out, as discussed
above. Of course, the nonexistence of evidence is not necessarily
the evidence of nonexistence, and it is very much possible that in
the future, successful polynomial time algorithms will be con-
structed in the regime αALG <M=N< αCOND. But there is another
limitation of the theory of algorithmic hardness based on the
emergence of frozen variables: Just like the notion of the satisfi-
ability phase transition, the notion of frozen variables does not
apply to problems of optimization type, such as the largest clique
problem, or an optimization problem appearing in the context of
spin-glass models—for example, the problem of finding a ground
state of a spherical p-spin-glass model. In this model, spins take
values in a continuous range, and, thus, the notion of frozenness,
which is exclusively discrete, is lost.

Topological Complexity Barriers: The OGP
We now introduce a new approach for predicting and proving
algorithmic complexity for solving random constraint satisfaction
problems and optimization problems on random structures, such
as the ones introduced in sections The Largest Clique of a Random
Graph: the Most “Embarrassing” Open Problem in Random
Structures and In Search of the Right Algorithmic Complexity
Theory. The approach bears a lot of similarity with the predictions
based on the clustering property described in the latter of the two
aforementioned sections, but has important and nuanced differ-
ences, which allow us to rule out large classes of algorithms,
something that did not seem possible before. An important
special case of such algorithms is stable algorithms, namely, al-
gorithms exhibiting low sensitivity to the data input. A special, yet
very broad and powerful, class of such algorithms is algorithms
based on low-degree polynomials. A fairly recent stream of re-
search (42–44) puts forward an evidence that, in fact, algorithms
based on low-degree polynomials might be the most powerful
class of polynomial time algorithms for optimization problems on
random structures, such as the problems discussed in this paper.
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AGeneric Formulation of the Optimization Problem. To set the
stage, we consider a generic optimization problem minσLðσ,ΞNÞ.
Here, L encodes the objective function (cost) to be minimized.
The solutions σ lie in some ambient solution space ΣN, which is
typically very high-dimensional, often discrete, with N encoding
its dimension. The space ΣN is equipped with some metric (dis-
tance) ρNðσ, τÞ defined for each pair of solutions σ, τ∈ΣN. For the

max-clique problem, we can take ΣN = f0,1gN. For the Number

Partitioning problem, we can take ΣN = f−1,1gN. ΞN is intended to
denote the associated randomness of the problem. So, for ex-
ample, for the max-clique problem, ΞN encodes the random

graph GðN, 1=2Þ, and σ ∈ f0,1gN encodes a set of nodes consti-
tuting a clique, with σi = 1 if node i is in the clique and =0 other-
wise. We denote by ξ an instance generated according to the
probability law of ΞN. In the present context, ξ is any graph, for

which the likelihood of generating is 2−
NðN−1Þ

2 . Finally, −Lðσ,ΞNÞ is
the number of ones in the vector σ. Now, if σN does not actually
encode a clique (that is, for at least one of the edges ði, jÞ of the
graph, we have σN,i = σN,j = 1), we can easily augment the setup by
declaring Lðσ,ΞNÞ=∞ for such ”nonclique” encoding vectors.
For the Number Partitioning problem, ΞN is just the probability
distribution associated with an N-vector of independent standard

Gaussians. For each σ ∈ΣN = f−1,1gN and each instance ξ of ΞN,
the value of the associated partition is Lðσ, ξÞ= jhσ, ξij. Here, hx, yi
denotes an inner product between vectors x and y. Thus, for the
largest clique problem, we have that the random variable
c* =−minσ∈ΣNLðσ,ΞNÞ is approximately 2 log2N with high degree
of likelihood. For the Number Partitioning problem, we have that
c* =minσ∈ΣNLðσ,ΞNÞ is approximately

ffiffiffiffi
N

p
2−N with high degree of

likelihood as well.

The OGP and its Variants. We now introduce the OGP and its
several variants. The term was introduced in ref. 45, but the prop-
erty itself was discovered by Achlioptas and Ricci-Tersenghi (27)
and Mezard, Mora, and Zecchina (28). The definition of the OGP
pertains to a particular instance ξof the randomnessΞN. We say that
the optimization problem minσLðσ, ξÞ exhibits the OGP with values
μ> 0,0≤ ν1 < ν2 if for every two solutions σ, τ, which are μ-optimal in
the additive sense, namely, satisfy Lðσ, ξÞ≤ c* + μ,Lðτ, ξÞ≤ c* + μ,
it is the case that either ρNðσ, τÞ≤ ν1 or ρNðσ, τÞ≥ ν2. Intuitively, the
definition says that every two solutions that are ”close” (within an
additive error μ) to optimality are either close (at most distance ν1) to
each other or ”far” (at least distance ν2) from each other, thus
exhibiting a fundamental topological discontinuity of the set of
distances of near-optimal solutions. In the case of random instances
ΞN, we say that the problem exhibits the OGP if the problem
minLðσ, ξÞ exhibits the OGP with high likelihood when ξ is gener-
ated according to the law ΞN. An illustration of the OGP is depicted
in SI Appendix, Fig. S2. The notion of the ”overlap” refers to the
fact that distances in normed space are directly relatable to inner
products, commonly called overlaps in the spin-glass theory, via

kσ − τk22 = kσk22 + kτk22 − 2hσ, τi and the fact that solutions σ, τ
themselves often have identical or close to identical norms. The
OGP is of interest only for certain choices of parameters μ, ν1, ν2,
which are always problem-dependent. Furthermore, all of these
parameters along with the optimal value c* are usually dependent
on the problem size, such as the number of Boolean variables in the
K-SAT model or the number of nodes in a graph. In particular, the
property is of interest only if there are pairs of μ-optimal solutions
σ, τ satisfying both ρNðσ, τÞ≤ ν1 and ρNðσ, τÞ≥ ν2 property. The first

case is trivial, as we can take τ= σ, but the existence of pairs with
distance at least ν2 needs to be verified. Establishing the OGP
rigorously can be either straightforward or technically very involved,
again depending on the problem. It is should not be surprising that
the presence of the OGP presents a potential difficulty in finding an
optimal solution, due to the presence of multiple local minima,
similarly to the lack of convexity property. An important distinction
should be noted, however, between the OGP and the lack of
convexity property. The function Lðσ, ξÞ can be nonconvex, but not
exhibiting the OGP, as depicted in SI Appendix, Fig. S3. Thus, the
”common” intractability obstruction presented by nonconvexity is
not identical with the OGP. Also, the solution space ΣN is often
discrete (such as the binary cube), rendering the notions of
convexity nonapplicable.

We now extend the OGP definition to the so-called ensemble
OGP, abbreviated as the e-OGP, and themulti-OGP, abbreviated
as the m-OGP. We say that a set of problem instances Ξ satisfies
the e-OGP with parameters μ> 0,0≤ ν1 < ν2 if for every pair of
instances ξ,ψ ∈Ξ, for every μ-optimal solution σ of the ξ instance
(namely, Lðσ, ξÞ≤minσ′Lðσ′, ξÞ+ μ), and every μ-optimal solution τ

of the ψ instance (namely, Lðτ,ψÞ≤minτ′Lðτ′,ψÞ+ μ), it is the case
that either ρNðσ, τÞ≤ ν1 or ρNðσ, τÞ≥ ν2, and in the case when in-
stances ξ and ψ are probabilistically independent, the former case
(i.e., ρNðσ, τÞ≤ ν1) is not possible. The set Ξ represents a collection
of problem instances over which the optimization problem is
considered. For example, Ξ might represent a collection of cor-
related random graphs GðN, 1=2Þ or random matrices or random
tensors. Indeed, below, we will provide an example of a family of
correlated random graphs GðN, 1=2Þ as a main example of the
case when the e-OGP holds. We see that the OGP is the special
case of the e-OGP when Ξ consists of a single instance ξ.

Finally, we say that a family of instances Ξ satisfies the m-OGP
with parameters μ, ν1 < ν2 and m if for every m-collection of in-
stances ξ1, . . . , ξm ∈Ξ and every collection of solutions σ1, . . . , σm
that are μ-optimal with respect to ξ1, . . . , ξm, at least one pair σi, σj
satisfies ρNðσi, σjÞ≤ ν1 or ρNðσi, σjÞ≥ ν2. Informally, the m-OGP
means that one cannot find m near-optimal solutions for m in-
stances such that all mðm− 1Þ=2 pairs of distances lie in the in-
terval ðν1, ν2Þ. Clearly, the case m= 2 boils down to the e-OGP
discussed earlier. In many applications, the difference between ν1
and ν2 is often significantly smaller than the value of ν1 itself; that
is, ν1 ≈ ν2. Thus, roughly speaking, the m-OGP means that one
cannot find m near-optimal solutions so that all pairwise distances
are ≈ ν1. The first usage of OGP as an obstruction to algorithms
was adopted by Gamarnik and Sudan in ref. 46. The first appli-
cation of m-OGP as an obstruction to algorithms was adopted by
Rahman and Virag in ref. 47. While their variant of m-OGP proved
useful for some applications (29), since then, the definition of m-
OGP has been extended to ”less symmetric” variants, as one by
Wein in ref. 48 and by Bresler and Huang in ref. 30. We will not
discuss the nature of these extensions and, instead, refer to the
aforementioned references for further details. e-OGP was intro-
duced by Chen et al. (49).

OGP Is an Obstruction to Stability. Next, we discuss how the
presence of variants of the OGP constitutes an obstruction to al-
gorithms. The broadest class of algorithms for which such an im-
plication can be established is algorithms that are stable with
respect to a small perturbation of instances ξ. An algorithm A is
viewed here simply as a mapping from instances ξ to solutions σ,
which we abbreviate asAðξÞ= σ. Suppose we have a parametrized
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collection of instances ξt with discrete parameter t taking values in
some interval ½0,T �. We say that the algorithm A is stable, or
specifically κ-stable, with respect to the family ðξtÞ if for every t,
ρNðAðξt+1Þ,AðξtÞÞ≤ κ. Informally, if we think of ξt+1 as an instance
obtained from ξt by a small perturbation, the output of the algo-
rithm does not changemuch: The algorithm is not very sensitive to
the input. Continuous versions of such stability have been con-
sidered as well, specifically in the context of models with Gaussian
distribution. Here, t is a continuous parameter, and the algorithm
is stable with sensitivity value δ if for every t ρNðAðξt+δÞ,AðξtÞÞ≤ κ.
Often, these bounds are established only with probabilistic
guarantees, both in the case of discrete and continuously valued t.

Now, assume that the e-OGP holds for a family of instances
ξt , t ∈ ½0,T �. Assume two additional conditions: 1) The regime
ρNðσ, τÞ≤ ν1 for μ-optimal solutions σ of ξ0, and μ-optimal solutions
τ of ξT is nonexistent (namely, every μ-optimal solution of ξ0 is far
from every μ-optimal solution of ξT); and 2) κ< ν2 − ν1. The
property (1) is typically verified since the endpoints ξ0 and ξT
of the interpolated sequence are often independent, and (1) can
be checked by straightforward moment arguments. The verifica-
tion of condition (2) typically involves technical and problem-
dependent arguments. The conditions (1) and (2) above plus the
OGP allow us to conclude that any κ-stable algorithm fails to
produce a μ-optimal solution. This is seen by a simple contradic-
tion argument based on continuity: Consider the sequence of
solutions σt =AðξtÞ, t = 0, . . . ,T, produced by the algorithm A.
We have ρNðσt , σt+1Þ≤ κ for every t and ρNðσ0, σT Þ≥ ν2 by the
OGP and assumption (1) above. Suppose, for the purposes of
contradiction, that every solution σt produced by the algo-
rithm is μ-optimal for every instance ξt. Then, by the OGP, it is
the case that, in particular, ρNðσ0, σtÞ is either at most ν1 or at
least ν2 for every t. Since ρNðσ0, σT Þ≥ ν2, there exists t, possi-
bly t = 0, such that ρNðσ0, σtÞ≤ ν1 and ρNðσ0, σt+1Þ≥ ν2. Then,
κ≥ ρNðσt , σt+1Þ≥ jρNðσ0, σtÞ− ρNðσ0, σt+1Þj≥ ν2 − ν1, which is a
contradiction with the assumption (2).

Simply put, the crux of the argument is that the algorithm
cannot ”jump” over the gap ν2 − ν1, since the incremental dis-
tances, bounded by κ, are too small to allow for it. This is the main
method by which stable algorithms are ruled out in the presence
of the OGP and is illustrated in SI Appendix, Fig. S4. In this figure,
the smaller circle represents all of the μ-optimal solutions that are
at most distance ν1 from σ0, across all instances t ∈ ½0,T �. The
complement to the larger circle represents all of the μ-optimal
solutions that are at least distance ν2 from σ0, again across all in-
stances t ∈ ½0,T �. All μ-optimal solutions across all instances should
fall into one of these two regions, according to the e-OGP. As the
sequence of solutions AðξtÞ, t ∈ ½0,T � has to cross between these
two regions, at some point t, the distance between AðξtÞ and
Aðξt+1Þ will have to exceed κ, contradicting the stability property.

Suppose the model does not exhibit the OGP, but does exhibit
the m-OGP (ensemble version). We now describe how this can also
be used as an obstruction to stable algorithms. As above, the argu-
ment is based on first verifying that for two independent instances ξ
and eξ, the regime ρNðσ, τÞ≤ ν1 is not possible with overwhelming
probability. Considerm+ 1 independent instances ξ0, ξ1, . . . , ξm and
consider an interpolated sequence ξ1,t , . . . , ξm,t , t ∈ ½0,T � with the
property that ξi,T = ξi and ξi,0 = ξ0 for all i= 1,2, . . . ,m. In other
words, the sequence starts with m identical copies of instance ξ0
and slowly interpolates toward m instance ξ1, . . . , ξm. The details of
such a construction are usually guided by concrete problems.
Typically, such constructions are also symmetric in distribution, so
that, in particular, all pairwise expected distances between the

algorithmic outputs E ρN Aðξi,tÞ,Aðξj,tÞ
� �� �

are the same, say,
denoted by Δt , t ∈ ½0,T �. Furthermore, in some cases, a concen-
tration around the expectation can be also established. As an im-
plication, this set of identical pairwise distances Δt spans values
from zero to value larger than ν1 by the assumption (1). But the
stability of the algorithm A also implies that at some point t, it will
be the case that Δt ∈ ðν1, ν2Þ, contradicting the m-OGP. This is il-
lustrated in SI Appendix, Fig. S5. The high-concentration property
discussed above was established by using standard methods in
refs. 29 and 48, but the approach in ref. 50 was based on dif-
ferent arguments employing methods from the Ramsey extremal
combinatorics field. Here, the idea is to generate many more M � m
independent instances than the value of m arising in m-OGP and
showing using Ramsey theory results that there should exist a subset of
m-instances such that all pairwise distances fall into interval ðν1, ν2Þ.

OGP for Concrete Models. We now illustrate the OGP and its
variants for the Number Partitioning problem and the maximum
clique problem as examples. The discussion will be informal, and
references containing detailed derivations will be provided. The
instance ξ of the Number Partitioning problem is a sequence
X1, . . . ,XN of independent standard normal random variables. For

every binary vector σ ∈ f−1,1gN, the inner product ZðσÞ= hξ, σi is a
mean zero normal random variable with varianceN. The likelihood
that ZðσÞ takes value in an interval around zero with length

ffiffiffiffi
N

p
2−N

is roughly ð2πÞ−1
2 times the length of the interval, namely, times

2−N. Thus, the expected number of such vectors σ is of constant

order ð2πÞ−1
2 since there are 2N choices for σ. This gives an intuition

for why there do exist vectors achieving value
ffiffiffiffi
N

p
2−N. Details can

be found in ref. 11. Any choice of order magnitude smaller length
interval leads to expectation converging to zero and, thus, is
nonachievable with overwhelming probability. Now, to discuss
the OGP, fix constants α, ρ∈ ð0,1Þ and consider pairs of vectors
σ, τ, which achieve objective value

ffiffiffiffi
N

p
2−αN and have the scaled

inner product N−1hσ, τi= ρ. The expected number of such pairs is

roughly N
1− ρ
2 N

� �
times the area of the square with side length ap-

proximately 2−αN, namely, 2−2αN. This is because the likelihood
that a pair of correlated Gaussians ZðσÞ,ZðτÞ falls into a very small
square around zero is dominated by the area of this square up

to a constant. Approximating N
1− ρ
2 N

� �
as exp NHð1− ρ

2 Þ� �
, where

HðxÞ=−x log x − ð1− xÞlogð1− xÞ is the standard binary entropy,
the expectation of the number of such pairs evaluates to roughly
exp N Hð1− ρ

2 Þ− 2α log 2
� �� �

. As the largest value of Hð · Þ is log 2,
we obtain an important discovery: For every α∈ ð1=2,1Þ, there is a
region of ρ of the form ðρ0, 1Þ for which the expectation is expo-
nentially small in N, and, thus, the value

ffiffiffiffi
N

p
2−αN is not achievable

by pairs of partitions σ and τ with scaled inner products in ðρ0, 1Þ,
with overwhelming probability. Specifically, for every pair of
μ-optimal solutions σ, τ with μ= ð2−αN − 2−NÞ, it is the case that
N−1hσ, τi is either one or at most ρ0. With this value of μ and
ν1 = 0, ν2 =Nð1− ρ0Þ=2, we conclude that the model exhibits
the OGP.

Showing the ensemble version of OGP (namely, e-OGP) can
be done using very similar calculations, but what about values of α
smaller than 1=2? After all, the state-of-the-art algorithms achieve

only order 2−Oðlog2 NÞ, which corresponds to α= 0 at scale. It turns
out (50) that, in fact, the m-OGP holds for this model for all strictly
positive α with a judicious choice of constant value m. Further-

more, the m-OGP extends all the way to 2−Oð
ffiffiffiffiffiffiffiffiffiffiffiffi
N logN

p
Þ by taking m
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growing with N, but not beyond that value, at least using the
available proof techniques. Thus, at this stage, we may conjecture
that the problem is algorithmically hard for objective values

smaller than order 2−Oð
ffiffiffiffiffiffiffiffiffiffiffiffi
N logN

p
Þ, but beyond this value, we don’t

have plausible predictions either for hardness or tractability.
The largest clique problem is another example where the

OGP-based predictions are consistent with the state-of-the-art
algorithms. Recall from the earlier section that while the largest
clique in GðN, 1=2Þ is roughly 2 log2N, the largest size clique
achievable by known algorithm is roughly half-optimal with size
approximately log2N. Fixing α∈ ð1,2Þ, consider pairs of cliques σ, τ
with sizes roughly α log2N. This range of α corresponds to clique
sizes known to be present in the graph existentially with over-
whelming probability, but not achievable algorithmically. As it turns

out (46, 51), the model exhibits the OGP for α∈ ð1+ 1=
ffiffiffi
2

p
, 2Þ and

overlap parameters ν1ðαÞ< ν2ðαÞ, both of which are at the scale
log2N. Specifically, every two cliques of size α log2N have inter-
section size either at least eν1ðαÞ or at most eν2ðαÞ, for some values
eν1ðαÞ>eν2ðαÞ, both at scale log2n. This easily implies OGP with
νjðαÞ= 2α−eνjðαÞ, j= 1,2. The calculations in refs. 46 and 51 were
carried out for a similar problem of finding a largest independent
set (a set with no internal edges) in sparse random graphs
GðN,pNÞ with pN of the order Oð1=NÞ, but the calculation details
for the dense graphGðN, 1=2Þ are almost identical. The end result
is that eνjðαÞ= xjðαÞlog2N, where x1ðαÞ and x2ðαÞ are the two

roots of the quadratic equation x2=2− x + 2α− α2 = 0, namely,

1±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− 2ð2α− α2Þ

p
, and roots exist if and only if α> 1+ 1=

ffiffiffi
2

p
. For

recent algorithmic results for the related problem on random
regular graphs with small degree, see ref. 52.

To illustrate the ensemble version of the OGP, consider an
ensembleG1, . . . ,G N

2ð Þ of randomGðN, 1=2Þgraphs, constructed
as follows. Generate G0 according to the probability law of
GðN, 1=2Þ. Introduce a random uniform order π of N

2

� �
pairs of

nodes 1, . . . ,N, and generate graph Gt from Gt−1 by resampling
the pair ðit , jtÞ—the t-th pair in the order π—and leaving other
edges of Gt−1 intact. This way, each graph Gt individually has the
law of GðN, 1=2Þ, but neighboring graphs Gt−1 and Gt differ by at
most one edge. The beginning and the end graphs G0 and G N

2ð Þ
are clearly independent. Now, fix α∈ ð1+ 1=

ffiffiffi
2

p
, 2Þ and x ∈ ð0, αÞ

A simple calculation shows that the expected number of α log2N
size cliques σ in Gt1 and same-size cliques τ in Gt2, such that the
size of the intersection of σ and τ is x log2N, is approximately

given by expðð1+oð1ÞÞlog2
2N ð1− ρÞx2=�

2− x + 2α− α2ÞÞ, where
ρ= ðt2 − t1Þ= N

2

� �
is the (rescaled) number of edges of Gt2, which

were resampled from Gt1. Easy calculation shows that the func-
tion ð1− ρÞx2=2− x + 2α− α2 has two roots x1 > x2 in the interval

ð0, αÞ given by ð1− ρÞ−1 1±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− 2ð1− ρÞð2α− α2Þ

p� �
, when the

larger root is smaller than α, namely, when ρ< 2
α− 1. On the other

hand, when ρ> 2
α− 1, including the extreme case ρ= 1 corre-

sponding to t1 = 0, t2 = N
2

� �
, there is only one root in ð0, αÞ. The

model thus not only does exhibit the e-OGP for the ensemble
Gt , 0≤ t ≤ N

2

� �
. Additionally, the value ρ* = 2

α− 1 represents a new
type of phase transition. When ρ< ρ*, every two cliques with size
α log2N have intersection size either at least x1 log2N or at most
x2 log2N. On the other hand, when ρ> ρ*, the second regime
disappears, and any two such cliques have intersection size only
at most x2 log2N. The situation is illustrated in SI Appendix, Fig.

S6 for the special case α= 1.72 and ρ* = 2=α− 1= 0.163.
The value α= 1+ 1=

ffiffiffi
2

p
is not tight with respect to the apparent

algorithmic hardness, which occurs at α= 1, as discussed earlier.
This is where the multi-OGP comes to rescue. A variant of an
(asymmetric) m-OGP has been established recently in ref. 48,
building on an earlier symmetric version of m-OGP, discovered in
ref. 47, ruling out the class of stable algorithms as potential con-
tenders for solving the Independent Set problem above α= 1.
More specifically, in both works, it is shown that for every fixed
e> 0, there exists a constantm=mðeÞ such that the model exhibits
m-OGP with this value of m for independent sets corresponding
to α= 1+ e.

Stability of Low-Degree Polynomials. How does one establish
the link of the form OGP implies Class C of algorithms fails, and
what classes C of algorithms can be proven to fail in presence of
the OGP? As discussed earlier, the failure is established by
showing stability (insensitivity) of the algorithms in class C to the
changes of the input. The largest class of algorithms to the day
that is shown to be stable is the class of algorithms informally
dubbed as ”low-degree polynomials.” This class of algorithms has
deep connections with the so-called Sum-of-Squares method (42–
44). Roughly speaking, this is a class of algorithms where the so-
lution σ ∈ΣN is obtained by constructing an N-sequence of mul-
tivariate polynomials pjðξÞ, j= 1, . . . ,N with variables evaluated at
entries of the instance ξ∈ΞN. The largest degree d of the poly-
nomial is supposed to be low, though depending on the problem,
it can take even significantly high value. What can be said about
this method in the context of the problems exhibiting the OGP? It
was shown in refs. 30, 48, and 51 that degree-d polynomial-based
algorithms are stable. This is true even when d is as large as
OðN=logNÞ. Thus, algorithms based on polynomials even with
degree OðN=logNÞ fail to find near-optimum solutions for these
problems due to the presence of the OGP. Many algorithms can
be modeled as special cases of low-degree polynomials, and
therefore ruled out by OGP, including the so-called Approximate
Message Passing algorithms (51, 53), local algorithms considered
in refs. 46 and 47, and quantum versions of local algorithms
known as QAOA (4).

OGP and the Problem of Finding Ground States of p-Spin
Models. There is another large class of optimization problems
for which the OGP approach provides a tight classification of
solvable vs. not yet solvable in polynomial time problems. It is the
problem of finding ground states of p-spin models—the very class
of optimization problems that led to studying the overlap distri-
bution and overlap gap-type properties to begin with. The
problem is described as follows: Suppose one is given a p-order
tensor J of side length N. Namely, J is described as a collection of
real values Ji1,...,ip, where i1, . . . , ip range between one and N.
Given the solution space ΣN, the goal is finding a solution σ ∈ΣN

(called ground state), which minimizes the inner product
hJ, σi=P

i1,...,ipJi1,...,ipσi1 . . . σip. A common assumption, capturing

most of the structural and algorithmic complexity of the model, is
that the entries Ji1,...,ip are independent standard normal entries.
Two important special cases of the solution space ΣN include the

case when ΣN is a binary cube f−1,1gN and when it is a sphere of
a fixed radius (say, one) in the N-dimensional real space, the
latter case being referred to as the spherical spin-glass model.

The special case p= 2 and ΣN = f−1,1gN is the celebrated
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Sherrington–Kirkpatrick model (54)—the centerpiece of the spin-
glass theory. The problem of computing the value of this optimi-
zation problem above was at the core of the spin-glass theory in
the past four decades, which led to the replica symmetry-breaking
technique first introduced in the physics literature by Parisi (25)
and then followed by a series of mathematically rigorous devel-
opments, including those by Talagrand (55) and Panchenko (56).

The algorithmic progress on this problem, however, is quite
recent. In the important development by Subag (57) and Mon-
tanari (58), polynomial time algorithms were constructed for
finding near ground states in these models. Remarkably, this was
done in the regimes where themodel does not exhibit the OGP. A
follow-up development in ref. 59 extended this to models that do
exhibit OGP, but in this case, near ground states are not reached.
Instead, one constructs the best solution within the part of the
solution space not exhibiting the OGP. To put it differently, the
algorithms produce a μ-optimal solution for the smallest value of μ
for which the OGP does not hold. Conversely (51, 53, 60), the
optimization problem above cannot be solved within the class of
stable algorithms.

OGP, the Clustering Property, and the Curious Case of the

Perceptron Model. We now return to the subject of weak and
strong clustering property and discuss it from the perspective of
the OGP and algorithmic hardness. The relationship is nontrivial
and perhaps best exemplified by yet another model, which ex-
hibits statistical to computation gap: the binary perceptron
model. The input to the model is M×N matrix of i.i.d. standard
normal entries Xij, 1≤ i≤M, 1≤ j≤N. A fixed parameter κ> 0 is

fixed. The goal is to find a binary vector σ ∈ f±1gN such that for
each i,

P
1≤j≤NXijσj ∈ ½−κ, κ�. This is also known as the binary sym-

metric perceptron model, to contrast it with the asymmetric
model, where the requirement is that Xσ ≥ κ, for some fixed pa-
rameter κ (positive or negative), with inequalities interpreted
coordinate-wise. In the asymmetric case, a typical choice is κ= 0.
Replica symmetry-breaking-based heuristic methods developed
in this context by Krauth andMézard (61) predict a sharp threshold
at αSAT = 0.83‥ for the case κ= 0, so that when α< αSAT andM≤ αN
such a vector σ exists, and when α> αSAT such a vector σ does not
exist, both with high probability as N→∞. This was confirmed
rigorously as a lower bound in ref. 62. For the symmetric case, a
similar sharp threshold is known at a κ-dependent constant
αSATðκÞ, as established in refs. 63 and 64.

The known algorithmic results, however, are significantly
weaker. The algorithm by Kim and Rouche (65) finds σ for the
asymmetric κ= 0 case when α< 0.005, notably much smaller than
αSAT. It is quite likely (though not known) that a version of this al-
gorithm should work in the symmetric case as well for some positive
κ-dependent constant α. Heuristically, the message-passing al-
gorithm was found to be effective at small positive densities, as
reported in ref. 66. Curiously, though, it is known that the symmetric
model exhibits the weak clustering property at all positive densities
α> 0 (63, 64)! Furthermore, quite remarkably, each cluster consists
of singletons! Namely, the cardinality of each cluster is one, akin to
the ”needles in the haystack” metaphor. A similar picture was
established in the context of the Number Partitioning problem
(50). This interesting entropic (due to the subextensive cardinality
of clusters) phenomenon is fairly novel, and its algorithmic impli-
cations have been also discussed in ref. 67. Thus, assuming the
extendibility of the Kim–Roche algorithm and/or validity of
the message-passing algorithm, we have an example of a

model exhibiting weak clustering property, but amenable to
polynomial time algorithms. As an explanation of this phenomena,
the aforementioned references point out the ”nonuniformity” in
algorithmic choices of the solutions, allowing it somehow to bypass
the overwhelming clustering picture exhibited by the weak
clustering property.

What about the strong clustering property and the OGP? For
any model, the presence of the pairwise (m= 2) OGP for a single
instance implies the strong clustering property: If every pair of
μ-optimal solutions is at distance at most ν1 or at least ν2 > ν1, and
the second case is nonvacuous, clearly, the set of solutions is
strongly clustered. It, furthermore, indicates that the diameter of
each cluster is strictly smaller (at scale) than the distances between
the clusters (SI Appendix, Figs. S2 and S3). In fact, this is precisely
how the strong clustering property was discovered to begin with
in refs. 27 and 28. However, the converse does not need to be the
case, as one could not rule out an example of a strong clustering
property where the cluster diameters are larger than the distances
between them, and, as a result, the overlaps of pairs of solutions
span continuous intervals. At this stage, we are not aware of any
such examples.

Back to the symmetric perceptron model, it is known that the
model does exhibit the OGP, at a value α strictly smaller than the
critical threshold αSATðκÞ (68), but strictly larger than the algorithmic
value 0.005 achieved algorithmically in ref. 65. As a result, the strong
clustering property holds as well above this α. Naturally, we con-
jecture that the problem of finding a solution σ is hard in this re-
gime. In conclusion, the binary perceptron model demonstrates
that the weak clustering property is provably not an obstruction
to polynomial time algorithms, but OGP and its implication, the
strong clustering property, likely is, at least for the case of stable
algorithms.

Finally, as the strong clustering property appears to be the
most closely related to the OGP, it raises a question as to whether
it can be used as a ”signature” of hardness in lieu of OGP and/or
whether it can be used as a method to rule out classes of algo-
rithm, similarly to the OGP-based method. There are two chal-
lenges associated with this proposal. First, we are not aware of any
effective method of establishing the strong clustering property
other than the one based on the OGP. Second, and more im-
portantly, it is not entirely clear how to link meaningfully the
strong clustering property with m-OGP, which appears necessary
for many problems in order to bridge the computational gaps to the
known algorithmically achievable values. Likewise, it is not entirely
clear what is the appropriate definition of either weak or strong
clustering property in the ensemble version, when one considers a
sequence of correlated instances, which is again another important
ingredient in the implementation of the refutation-type arguments.
Perhaps some form of dynamically evolving clustering picture is of
relevance here. Some recent progress on the former question re-
garding the geometry of the m-OGP was obtained recently in ref.
69 in the context of the spherical spin-glass model. We leave both
questions as interesting open venues for future investigation.

Discussion
In this article, we have discussed a new approach to computational
complexity arising in optimality studies of random structures. The
approach, which is based on topological disconnectivity of the
overlaps of near-optimal solutions, called the OGP, is both a theory
and a method. As a theory, it predicts the onset of algorithmic
hardness in random structures at the onset of the OGP. The ap-
proach has been verified at various levels of precision in many
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classes of problems, and the summary of the state of the art is
presented in SI Appendix, Table S1. In this table, the current list of
models known to exhibit an apparent algorithmic hardness is pro-
vided, along with references and notes indicating whether the
OGP-based method matches the state-of-the-art algorithmic
knowledge. The ”Yes” indicates this to be the case, and ”Not
known” indicates that the formal analysis has not been completed
yet. Remarkably, to the day, we are not aware of a model that does
not exhibit the OGP, but that is known to exhibit some form of an
apparent algorithmic hardness.

TheOGP-based approach also provides a concrete method for
rigorously establishing barriers for classes of algorithms. Typically,
such barriers are established by verifying certain stability (input in-
sensitivity) of algorithms, making them inherently incapable of

overcoming the gaps appearing in the overlap structures. While the
general approach for ruling out such classes of algorithm is more or
less problem-independent, the exact nature of such stability, as well
as the OGP itself, is very much problem-dependent, and the re-
quired mathematical analysis varies from borderline trivial to ex-
tremely technical, often relying on the state-of-the-art development
in the field of mathematical theory of spin glasses.

Data Availability. There are no data underlying this work.
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